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ABSTRACT This study investigates the theoretical and numerical basis
of finite element-hosted couplings with the boundary element method
(BEM). The emphasis of the study is on (1) conceptually unifying the
different coupling approaches and (2) providing an algorithm to facili-
tate future implementation. Overviews of both the indirect and direct
boundary element formulations are included. The theoretical develop-
ment of BEM stiffness matrices is limited to a physically intuitive
derivation based on the indirect BEM. Discontinuity between finite
element and boundary element regions is an inherent trait of the bound-
ary element method; this behavior is not eliminated by simply matching
the order of shape functions between the two methods. A discussion of
the numerical implementation of BEM-formulated stiffness matrices
addresses both the direct and indirect BEMs. The direct BEM is better
suited in coupled solution approaches due to its simpler traction-
displacement relationship. Algorithms are included which outline the
calculations unique to obtaining a stiffness matrix from the BEM.
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-INTRODUCTION

Boundary element methods (BEM) have become an accepted alternative

to domain-based methods (finite elements and finite difference) for many

classes of boundary value problems (Refs 1 and 2). The direct (DBEM)

and indirect (IBEM) formulations are two well established formulations

that are used to solve a variety of boundary value problems in engineer-

ing. The key to these formulations is the existence of a fundamental

singular solution (i.e., the solution for a point source or point load

* in an infinite domain -- a free-space Green's function).

This singular solution is jointly the blessing and curse of the

methods. Since it is a solution of the governing differential equations,

problems defined by a self-adjoint differential operator can be expressed

by integral equations. Numerically this means that for many classes of

problems BEMs require only the boundary to be discretized. The dimension-

ality of problems is reduced by one, and thus the methods lend themselves

to modeling infinite domains. The reduction in dimensionality reduces

the number of degrees of freedom in the approximation; however, the re-

sulting equations are nonsymmetric and fully populated in contrast to

the symmetric sparse systems characteristic of domain-based methods.

The singular nature of the fundamental solution allows the methods to

* effectively approximate problems having singular or high-gradient stress

fields. This same singular nature complicates the numerical integrations

inherent to the methods. The fundamental singular solution is well known

for many classes of boundary value problems with homogeneous domains.

0 However, for an arbitrary-inhomogeneous domain the fundamental solution

is not known, and additional numerical effort is required (Ref 3).

Since th- methods are relatively new, they have not been as extensively

developed as domain methods for nonlinear applications. They also lack

the generality (in terms of extensive continuum and structural element

I i bi aie) that commercial finite element computer programs possess.
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The finite element method (FEM) has been the most highly developed

approximate solution techniqte for many classes boundary value problems

(Ref 39). The most general derivation follows from a weighted residual

approximation of the boundary value problem. The error introduced by an

approximate solution is orthogonalized with respect to a set of weighting

functions to obtain the "best" approximate solution. For the Galerkin

weighted residual statement the weighting functions correspond to the

basis functions in which the approximate solution is expanded. For prob-
f,.- lems with a self-adjoint operator, the weak form of the Galerkin statement

is equivalent to the variational statement of the problem.

Basis functions in the FEM usually are locally based polynomials

for which the integrations are relatively simple. The local nature of

these functions leads to a sparse system of equations, but this same

* attribute hinders its ability to model infinite domains. To compensate

for this limitation, special elements (infinite elements) have been de-

veloped to model infinite domains which include a shape function based

on the form of analytical solutions (Ref 4). This contrasts with the

BEM, where rather than using analytical solutions to determine the form

of shape functions, the analytical solutions are used directly as weighting
functions (Ref 5). The generality of the Galerkin and variational

Po" statements allows nonlinearities and domain inhomogeneties to be

accommodated. For most structural applications the resulting system of

equations is also symmetrical.
Considering the individual strengths of boundary- and domain-based

methods, some classes of problems may be most effectively solved by com-

* bining the methods. Nonlinear soil-structure interaction and fracture

mechanics are two applications where a combined solution approach can

potentially provide a more effective analysis. For nonlinear soil-

structure interaction, the FEM could be used to model the structure and

* a region of the soil which is expected to exhibit nonlinear behavior;

-'[ the BEM could be used to approximate the infinite domain. For fracture

* mechanics, the FEM might be used to model all of the problem except a

region local to the crack tip where the BEM could provide a crack tip

" "element" capable of representing very high gradients.

2
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Objective

The ultimate objective of this research is to determine whether a

combination of boundary element and finite element solution methods

could more effectively solve nonlinear structural/geotechnical problems

than single method approaches. The immediate emphasis is on the formula-

tion of stiffness matrices for both the indirect and direct boundary

element methods (IBEM and DBEM, respectively).

Background

The idea of coupling the FEM and BEM is attributed to Wexler (Ref 6),

who used integral equation solutions to constrain FE solutions for infinite

domain field problems in the early 1970s. Other early examples of using

a combined solution approach dealt with wave phenomena, Chen and Mei

(Ref 7) and Shaw (Ref 8). Zienkiewicz et al. (Ref 9) proposed a combined

solution approach for statics problems followed by Osias' use of a coupled

solution to solve elastostatic problems (Ref 10).

There are numerous approaches to coupling the methods (Ref 11). In

this study the main classification is based upon "which method hosts the

coupling." For a BEM-hosted coupling the FEM subdomain is treated as a

BE region; equilibrium and compatibility are approximately enforced con-

tinuously along the interface, analogous to the BEM approach to modeling

piece-wise homogeneous problems. The resulting equations are nonsymmet-

ric, and thus this approach only lends itself to problems numerically

" dominated by the BE subdomain (Refs 11, 12, 13, 14 and 15). For a FEM-

'.. hosted coupling the BEM subdomain is treated as one or many finite ele-

ments. In this "super-element" approach the resulting BE equations re-

, flect the "equivalent" stiffness of the subdomain and can be directly

assembled by a FE program. The term "super-element" reflects the high

A degree of connectivity which will typically be present for a BE region.

A coupled solution approach does not seem to necessitate a displacement-

-: based FE formulation; however due to its commercial success, it appears

all the studies of coupled solutions have been based on this formulation.

3
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Within FEM-hosted couplings the next level of classification is the

procedure used to obtain the stiffness relationship. The two approaches

are: (1) a vqriational approach where a boundary variational equation is

the basis of the relationship, and (2) a direct approach where the BE

equations are manipulated into a stiffness form. A key step to both

approaches, using either BE formulation, is establishing a relationship

between the nodal tractions and the nodal displacements; an exception to

this is a variational approach with the IBEM which retains the artificial

tractions as unknowns in the system of equations (Refs II and 12).

Mei (Ref 16) was apparently the first to formulate a coupled solution

based on variational techniques (Ref 13). Other early efforts using a

variational approach include: Jeng and Wexler (Ref 17); Shaw (Ref 18);

Zienkiewicz, Kelly, and Bettess (Ref 9); and Kelly, Mustoe, and Zienkiewicz

(Ref 11). Stationarity of the variational statement necessarily produces

a symmetric system, and thus this approach is sometimes grouped with

some direct approaches as "symmetric couplings." In the variational

approach, a variational statement of the problem is written in a boundary

form with the absence of body sources or forces (Refs 11 and 19). For

elastostatics the variational statement corresponds to a boundary form

of the potential energy functional. There have been many modifications

of this functional for various purposes including (1) to relax essential

boundary conditions or interface compatibility and (2) to enforce equilib-

rium (Ref 19 and 20).

With a functional, relationships between boundary values obtained

from the integral equations are substituted into the functional, reduc-
* ing the number of unknowns. For a displacement-based FE, formulation

the nodal tractions are usually expressed in terms of the nodal displace-

ments, which requires the inversion of a fully populated coefficient

matrix. The previously mentioned exception to this approach (using the
. IBEM), writes the boundary tractions in terms of the artificial tractions.

In this case stationarity is taken with respect to both nodal displace-

monts and artificial boundary tractions instead of nodal displacements

alone. The lack of a matrix inversion is paid for by an increase in the

number of unknowns and a double integration process.

4
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In contrast to the variational formulations, Brebbia (see e.g.,

Ref 2, 5, or 21) directly manipulated the BE equations into a stiffness

form. The Maxwell-Betti reciprocal theorem proves that a stiffness

matrix should be symmetric for a linear elastic domain; however, the

direct manipulation does not produce a symmetric system. Brebbia

symmetrized the system by averaging the off-diagonal terms based on an

error minimization argument using the method of least squares. The

resulting stiffness matrix was of the same form as obtained by

variational methods using the potential energy functional (Ref 11).

Despite the apparent agreement between the two approaches, agreement

between proponents of the approaches is scarce. Kelly et al. (Ref 11)

state that the modification to obtain symmetry "apparently has no valid

foundation except that the energy approach led to a similar form." Brebbia

* et al. (Ref 2) later admitted that there is no rationale to justify the

error minimization and that the matrix should in fact be nonsymmetric.

In addition, he questions the combination of variational principles and

integral equations used in the variational approach. His argument is not

implying that a nonsymmetric stiffness matrix is physically meaningful

for an elastic domain; rather he seems to be indicating that the numerical

approximations used by the BEM will inherently produce a nonsymmetric

*..- stiffness matrix. Initial efforts indicated that the symmetric matrix

provided better results; however, more recent comparisons (Ref 20) using

quadratic elements and providing for geometric discontinuities indicate

the contrary. Fortunately for cases which have a relatively fine boundary

discretization, Roudolphi (Ref 22) has found the degree of nonsymmetry

* to be insignificant. This is likely to be the case for geotechnical

applications.

Another problem which is common to both approaches is failure of

the stiffness matrix to satisfy equilibrium. Equilibrium requires the

* terms in each column corresponding to a given global direction to sum to

"." zero. With the DBEM the system of equations can be augmented by two

-: additional equations which cause the approximate traction distribution

" - to identically satisfy equilibrium (Ref 11). By this approach the

* equilibrium problem is addressed while establishing the nodal traction-

displacement relationship instead of after the stiffness matrix is

5
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formed. Hartman (Ref 23) gives a theoretical discussion on the symmetry

and equilibrium problems and provides advice on how to correct them.

Tullberg and Belteus (Ref 20) compare the accuracy and convergence

characteristics of seven stiffness formulations for two simple

two-dimensional problems -- uniaxial tension and bending. The seven

stiffness matrices were obtained using the DBEM and included all the

variations mentioned above.

In addition to the differences used here to classify formulations,

there have been numerous other variations. Some researchers (Ref 19)

have used element condensation to reduce the unknowns for the BE super-

element to those located on the interface between the two methods. This

could be useful in fracture mechanics applications where numerous boundary

elements might be used near the crack tip. As previously mentioned,

* modified functionals have been usci to relax compatibility requirements

(e.g., when interfacing subdomains with different shape functions).

Variations in the BE formulations themselves introduce additional

classification parameters. Though not addressed in this study, for some

applications traction discontinuity is an important consideration. Many

ways of treating this problem have been reported (Ref 20, 25, 26, and

27). A simple though less rigorous approach is to position the colloca-

tion points at the interior of the element. When all of the collocation

points associated with an element are internally positioned, the elements

are referred to as "discontinuous" or "nonconforming elements (Ref 28).

Though the discontinuous elements adi some flexibility to the method in

-'. terms of mesh refinement, it is at the expense of increasing the number

* of equations by up to 100 percent. Discontinuous elements would appear

to complicate a coupling algorithm since the collocation points do not

correspond to node points.

* Relationship to Previous NCEL Work

The primary role of this research of the BEM has been to compliment

FEM analysis capabilities (i.e., coupled solution techniques). The BEM

* is in general a more analytically rigorous techiiique, and thus the fund-

amentals of the method have been investigated. As a result of these

6
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efforts the potential of the method as a separate analysis tool has also

been observed. Thus the efforts at coupling have emphasized a modular

" approach where it is assumed that both analysis methods can serve as an

individual or a coupled tool.

In NCEL's first study (Ref 29) the IBEM formulation was

investigated in one- and two-dimensional elastostatics and numerical

results were compared with the DBEM and analytical solutions. A crude

element (constant distribution) was used but the potential of the method

was evident. This study indicated the need for higher order elements

and integration techniques to improve results in the near boundary

region.

In NCEL's next study (Ref 15) a coupling of the BE and FE methods

was investigated. A BEM-hosted coupling was formulated, approximating

* compatibility and equilibrium on the interfaces. Qualitatively the

coupling was a success, but the simple constant elements used for both

%" methods prevented substantial quantitative evaluation. For nonlinear

soil-structure applications where the FEM is used to model the nonlinear

region, the FEM should host the coupling. Two areas required further

study: (1) accuracy of the BEM formulations, and (2) a FEM-hosted

coupling approach.

In the third study (Refs 30 and 31) higher order isoparametric bound-

ary elements were investigated along with their associated integration

techniques. Lachat and Watson (Ref 32) adapted the isoparametric element

formulation directly from FE technology. However, for the BEM the inte-

grands in the coefficient calculations are singular and thus their integra-

0 tion requires special attention. Though much effort had been devoted to

dealing with the integraLion over the singularity an effective numerical

approach to performing the integrations in the near boundary region was

lacking. A recursive algorithm which adaptively subdivides the element

* to maintain consistent accuracy independent of the response point location

was developed. The new element formulation has effectively eliminated

near boundary error resulting from coarse numerical integration and has

provided valuable insight to other errors inherent to the boundary

* elemert methods.

7
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Scope

In this study, di Eferent approaches to obtaining a FEM-hosted coupling

* are investigated. The emphasis is on: (1) conceptually unifying the dif-

feront coup] ing techniquies and (2) providing an algorithm to facilitate

future implementation. This preliminary report on the study emphasizes

the development of an alg¢crithm for obtaining a stiffness matrix from

% FEMs. A future report should provide a more detailed theoretical back-

ground and numerical results. A physically intuitive development of an

IIEM stiffness matrix is included, but the DBEM is also addressed. Over-

views of both the DBEM and UBEM formulations are given in the following

sections to establish nomenclature and to present the necessary equations

for background.

Nomenc l ature

A list of principal symbols used in the report is included as

Appendix A. Additional variables which have a limited scope of use are

definod wit.hin ti-e text. Modifications (such as the addition of a sub-

script) are also defined in the text unless listed in Appendix A.

Ttinstoend of thie matrix notation defined, indicial notation will sometimes

he used to clarify oquations. Indices will always he lower case while

ident i fying s,-hscripts or superscripts will be upper case.

* "TIEORY

'I."is study focuses on the development of a stiffness matrix for a

:.>lp led solution approach. Each method of analysis is applied to

• port ions of the domain where it, is best suited. For illustration the
F

(j'nm1i i Q (lViguro I ) is d iv ided into two subdoma ins Q , the FE subdomain,

.nd Q tlh, BE stibdornain. The equations of eqiilibrium are given by

* d.* +,. .-- (Ia)

00
....................................................... )



and the compatibility equations are given by

- (u i *+-u. *) (2)

ij 2 i,j j,i

The BE subdomain is assumed to be a linear isotopic homogeneous elastic

material. Thus the governing constitutive relations, generalized Hook's

law, are given as

o =2 j 4-jX
+ Ekk 6ij (3)

where X and p are Lame's constants expressed in terms of Young's modulus

(E) and Poisson's ratio (v) as

S E v E
(1 + v)(l - 2 v) ' 2(1 + (4

Alternatively the equilibrium (1), compatibility (2), and constitutive

(3) relations can be combined to give a single set of equations in terms

of displacement written as

u. + (X + 11) u. .. + =i  0 (5)1,jj J,JI

the Navier equations. The boundary conditions are given by

* 'i(x) u.(x) on r (6a)

ti(x) t(x) on rT  (6b)

where u (x) and ti(x) are prescribed distributions of boundary
1 1

- displacements and tractions, respectively. The simple notation does rot

imply, that the boundary condi-tions are mutually exclusive; the fully

mixfed boundary value problem is addressed.

0
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The key solution to Equation (5) for the more popular BEMs is the

fundatiental singular solution. This is the solution due to a concen-

trated load in an infinite space which has the same dimension as the

pioblem to be solved. For plane strain conditions the Kelvin solution

expresses the displacement field ui(x) due to a unit force ek( ) in an

infinite plane. The indices i, j, and k assume values of 1 or 2, and

repeated indices imply summation. The Kelvin solution is given by

Gik(X = 1C2 'ik r 2 Ak(b
'11

•C1 = _

where
*"- C2 = 3- 4 v

C 3-4 v
2

A A arbitrary constant tensor based on zero displacement
ik reference distance

yi x - ti

2r Yi Yi

By incorporating Equations (2) and (3), the stress field a. .(x) is given

as

(x) = T (X, ) e q) (8a)

where

C 2yi .
ijk 2 4(ikYj jkYi - 6ijYk) + 2(b)

"r r

* 3  -4 1-( -1 v)

= 1 2v

010
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Equilibrium conditions applied at a boundary point, with a unit

outward normal ni (g), and Equation (8a) combine to give the surface

tractions t.(x) as

ti(x) = Fik(x, ) ek(q) (9a)

where

k C3  () 46 2 y  k(9b)Fik(X,) = [4(nkYi - + C 4ik 2 jnj
r

A- Figures 2 and 3 illustrate the singular behavior of the fundamental

solution GI1 and Til respectively, for a point load applied at the

origin of the Cartesian system. The singularity of G is order ln(r),

while the singularity of T, obtained from derivatives of G, is order

< 1/r. The plane strain solution can be converted to the plane stress

solution by specifying an effective Poisson ratio v = v/(l+v).

The fundamental solution is a key ingredient in formulating

integral equations for the indirect and direct BEMs. Integral equations

are an equivalent statement of a boundary value problem. Finite

difference solutions approximate the differential equations; finite
%: element solutions approximate the stationarity of the variational

statement (in some instances); and BEMs approximate the integral

equations.

The following subsections provide an overview of both the direct

and indirect BEMs and their associated integral equations. These over-

views are followed by a derivation of an IBEM stiffness matrix. The

last subsection discusses the discontinuous nature of coupled solution

techniques--an inherent trait of integral equation methods.

Overview of Direct Boundary Element Method

The direct boundary element method is the most highly developed of

all the integral equation methods. It was first applied to elastostatics

* by Rizzo (Ref 33). Cruse and Rizzo (Ref 34) followed with a solution of

6 11
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the general transient elasto-dynamic problem. Since these early applica-

tions, it has matured numericaliy and the scope of application has

significantly broadened.

The integral equations on which the DBEM is based are known as the

', Somigliana identities. The first identity has been obtained by two dif-

ferent derivations. In both cases the fundamental solution plays a key

role. The first derivation uses Betti's reciprocal work theorem in which

one system is the actual boundary value problem and the second system

corresponds to the fundamental solution (Ref 33). Betti (1872-73) and

Somigliana (1885-86) were the first to apply potential methods to elas-

ticity (Ref 19). Thus it is not surprising that Betti's theorem and
"J

Somigliana's first identity are the Navier equation counterparts to

Green's second and third formula from potential theory.

* Somigliana's first identity is given by

.1 uG({) = (X) - F (x,) u.(x)] dx

r

4.- P Gij (Z_,) i z) dz (10a)

(x c r and z E 9)

in which the displacement field is written in terms of the boundary tractions,

boundary displacements, and body forces. The second identity is obtained

* by combining Equation (10a) with the compatibility (Equation (2)) and

the constitutive (Equation (3)) relations giving the stress tensor as

a jk() [ik(X,) ti(x) - Ei k(X, ) u.(x)J dx

* r

+ Hijk(Z, ) tP(z) dz (lOb)

r. 12
%,W,
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C.

in which the stress field is now expressed in terms of boundary tractions,

boundary displacements, and body forces. Since the compatibility relation

(Equation (2)) involves derivatives of displacement, the kernel

2functions If and E have singularities of orders 1/r and hr

respectively.

The DBEM is formulated by the numerical approximation of Equations

(10). Equation (lOa) is used to obtain the unknown boundary values, and

then both equations allow the calculation of internal responses. The

two approximations made to obtain the unknown boundary values are: (1)

integrating in a piecewise manner, and (2) solving the equation in a

boundary collocation sense. That is, the integration is subdivided over

boundary elements and domain cells; and the integral equations are applied

to a discrete number of points on the boundary.

* The early applications of the method used analytical integrations

over elements which could model constant or linear distributions of

boundary and domain values. More recent applications apply isoparametric

element concepts common to the finite element method (Ref 32). However,

unlike the FEM all quantities are interpolated at the same order (i.e.,

linear boundary elements interpolate geometry, displacements, and

tractions linearly). The boundary distribution of any field variable T

, , on a single element is written as

NEN

X (I) N( ) (11)
a ia

cx=l

where a is the node index; NEN is the number of element nodes; I is the

normalized local curvalinear coordinate; I. are nodal values of the

field variable; and N (q) are the appropriate polynomial shape functions

* for the element. A typical quadratic element (NEN = 3) is shown in

Figure 4. The shape functions for this element are given by

Nl() 2 012 -1) (12a)
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N1(n) (n + in) (12c)

The kernal functions in the integral equations are singular and require

special treatment when considering the response at points on (Ref 1) or

near (Ref 30) the boundary. The corresponding numerical details are

omitted here for brevity. While the use of the fundamental solution

ensures the satisfaction of the governing differential equations, the

boundary collocation ensures violation of the boundary conditions. This

point is discussed in a later section with respect to a coupled solution

*approach.

The piecewise integration and boundary collocation allow Equation

(lOa) to be approxim~iated by a system of linear equations in terms of the

nodal boundary values and body forces as

. G t - F u + G'@ = 0 (13)

. .' (for detail see Reference 1 or 2). The body forces are specified and

thus the product with G' gives a known vector. For a mixed boundary

value problem the vectors of nodal tractions and displacements contain

known and unknown values. To solve for the unknown nodal values we

partition the system as

IG [E E21 {~+G' 0 (14)

, ..-. and then collect the unknown nodal values to give

--* F r 0,
• = -G 2 F2  - (15)

The unknown nodal values are obtained by solving the above system. Then

* Somigliana's identities can be used to obtain the desired internal

responses.

* 14



Overview of Indirect Boundary Element Method

The indirect boundary element method is probably the second most

* common integral equation method. Like the direct method it also has its

origins in classical potential theory (Ref 35). Single- and double-

layer potentials were used in the theory of classical electrodynamics to

express boundary value problems as integral equations. The most advanced

implementation of the method appears to remain in its application to

electromagnetic field problems (Refs 6, 17, and 36). The indirect

method appears to have first been applied to elastostatics by Massonnet

-2' (Ref 37). The numerical development of IBEM, for elasticity problems,
'' paralleled that of the DBEM until the mid 1970s. In recent years it has

not been developed as extensively as the direct method; however, its

* physically meaningful formulation provides insight to both methods

(Ref 31).

The integral equations on which the IBEM is based are a single-
layer potential statement of the boundary value problem. The domain

9 is embedded in an infinite plane as shown in Figure 5. For elasticity

applications the single-layer source corresponds to a vector of

artificial tractions, Pk(q) (I c r). In this formulation we seek the

boundary distribution of artificial tractions which satisfy the

prescribed boundary conditions. These tractions are artificial in the

sense that they only exist because the domain Q has been embedded in an

A infinite plane. They represent an intermediate step in the formulation

and do not correspond to the actual boundary tractions. Artificial trac-

tions and body forces can be expressed as a "continuous" distribution of

ek(E). Thus the displacement, stress and traction fields are given by

integrating Equations (7a), (8a), and (9a) respectively as

* ui(x) = Gik(x, ) Pk d + G ik (x,z) OPk(z) dz (16)

-'. r

dC. - ijk( 4 Pk) d + f Tijk(x, TPk(z) dz (17)

r

'A
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t.(x) =J Fik(X,4) Pk(4) d + Fik(X,Z) k (z) dz (18)

Since the solution is expressed as a superposition of the fundamental

solution, the governing differential equations are satisfied over the

entire plane including the domain Q2.

To determine the distribution of the artificial tractions we bring

the field point x to the boundary r and enforce the boundary conditions,

Equation (6). The resulting integral expressions are given as

u(x) = Gik(X,{) Pk( ) d + Gi(x,z) ik(z) d/ X E r (19)
1 - f , k f ik- k- U

r Q

t-x W Fik(X, { ) Pk d4 + Fik(X,Z) Ok(z) dz x cT (20)

Equation (19) is regular upon integration while Eqiiation (20) must be

interpreted in a Cauchy principal value sense and is thus written as

t.(x) = W k + F ik(X,) () d
- 2 ik ) f(xk - k_] r

+ f Fik(x,z) k(z) dz x E FT (21)

SA tangent line is assumed through x and the sign on the first term

( ppends on the orientation of the element with respect to Q.

The T1EM is formulated by the numerical approximation of Equations

(16) through (21). Equations (19) and (21) are used to determine the

unknown artificial tractions, and then Equations (16) through (18) allow

tlhe calculation of internal responses. As with the DBEM, the two

,approximations made to obtain the unknowns are: (1) integrating in a

pinEowise manner an(d (2) solving the integral equations in a weighted

rnsidual sense (on the boundary). The integration is subdivided over

1oiindary elements and domain cells. Normally the integral equations are

16
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satisfied in a collocation sense; however, Lean et.al (Ref 36) report

improved accuracy by a Galerkin approximation. This study is limited to

a collocation approximation of the equations. Equations (19) and (21)

are then approximated as

u = G P + G' p (22a)

t = F P + F' (22b)

where u and t are values of boundary displacements and tractions at col-

location points. For continuous elements the collocation points correspond

to element node points. The coefficient matrices G, G', F and F' are

obtained by integrations of Equations (19) and (21.) with respect to the

* appropriate shape functions. P is the vector of unknown nodal artificial

traction values, and the last term provides the effect of the body forces

at each collocation point. For details see References 1, 2, 31, and 38.

For a mixed boundary value problem Equations (22a) and (22b) are

applied to FU and rT9 respectively, giving

S F , (23)

The nodal artificial tractions are obtained by solving the above system.

Then Equations (16) through (18) can be used to obtain the desired internal

responses. As when developing the system of equations, boundary values

are obtained by letting x go to the boundary (as Equations (19) and (21)).

Consider a few of the differences between the two BE formulations.

Let N be the number of boundary collocation points. Ignoring the
- CP

integrations associated with body forces, the DBEM (Equation 15) and

rBEM (Equation 23) require the calculation of 2(2N )2 and (2N )2
C1P CP

coefficients, respectively. However, in solving the system of

equations, the DBEM yields the unknown boundary values directly while

the IBEM yields the artificial traction distribution. To calculate all

the unknown boundary values the IBEM requires additional (2N
CP

17
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coefficient calculations. Though the total number of coefficients, and

thus integrations, required to obtain the unknown boundary values are

.J. equal, the computational effort is not. The coefficient matrices of the

DBEM are calculated "simultaneously" and thus the "overhead calculations"

(e.g., calculation of the jacobian) associated with the numerical integra-

tions are done once. Since these "overhead calculations" are performed

twice by the IBEM, it requires more effort. However, this comparison

has assumed the analyst needs all the boundary values. They are required

by the DBEM to calculate internal responses by the Somigliana identities;

they are not needed by the IBEM for internal response calculation and

thus the analyst can be selective.

The calculation of internal responses also differs between the

methods. The DBEM obtains internal responses by the Somigliana identi-

* ties, Equation (10), which integrate the effects of both the boundary

tractions and displacements. The IBEM only integrates the effects of

artificial tractions, Equations (16) through (18). As in developing the
J

systen of equations, though the effort is not doubled for the DBEM, it

4 is considerably more. Another important difference in the internal

response calculations is the order of singularity of the kernal

functions. For two dimensional problems the methods have the following

orders of singularity:

Displacement Strain, Stress, Traction
DBEM o(in r) and o(l/r) o(l/r) and o(l/r2)

IBEM o(In r) o(l/r)

0 

-.

Thus the DBEM must deal with stronger singularities and correspondingly

more difficult integrations. This problem is most severe in the near

boundary region (Refs 30 and 31). In fairness, the indirect method is

not without its problems in calculating internal responses. Though the

integration effort is reduced in the IBEM, often the accuracy is too. A

problem that is inherent to the IBEM is associated with loading and

geometric discontinuities. In these areas, the artificial tractions

* experience very high gradients even though boundary conditions may be

very well behaved. Thus unless these areas receive special treatment in

the numerical formulation or modeling, accuracy is locally very poor.

18
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%, For coupled solution approaches, particularly for infinite domain

problems, it is not easy to determine which BEM would be the most

A3 effective. Both methods must calculate two coefficient matrices which

involve the same orders of singularity. In addition, discontinuities

can often be avoided, eliminating them as a factor. In the following

section the IBEM is used to illustrate a direct derivation of a

stiffness matrix. The ideas can be applied to the DBEM but are

explained with the IBEM due to its conceptual simplicity.

A Direct Derivation of an IBEM Stiffness Matrix

-'5.

This section presents a physically intuitive derivation of an IBEM

stiffness matrix. The relation between nodal displacements and tractions

[ •is identical to the relation obtained directly by Kelly et al. (Ref 11).

The physical approach provides additional insight to the stiffness

formulation.

A stiffness matrix relates nodal displacements to generalized nodal

forces in the form

S.
%K u ~f (24)

where K, u and f are the stiffness matrix, displacement vector, and

N. generalized force vector, respectively. This basic definition and a
numerical solution provided by the IBEM allow a stiffness matrix to be

0..
calculated for a BEM region. Consider the displacement boundary value

* problem shown in Figure 6. The boundary, r, is subdivided into nE

boundary elements. The elements are shown as isoparametric quadratic

.thelements for illustration. All displacements are zero except the j

d o f which has a unit displacement. We can now use the IBEM to solve

" the displacement boundary value problem. As given by Equation (22a)

with body forces omitted, the unknown nodal artificial boundary trac-

tions are related to the known nodal displacements by

.~u = GP (25)

19
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This system of equations can be solved for the nodal artificial traction

values which can then be used to obtain the unknown real boundary trac-

, tions by an approximation of Equation (18). The nodal tractions can be

expressed in matrix form as

t = P (26)

The distribution of the traction along the boundary is then approximated

in terms of the locally based shape fdnctions* as

t(x) = M(x) t (27)

which by incorporating Equation (26) becomes

- t(x) M(x) F P (28)

* With the distribution of boundary tractions, generalized nodal forces

(on the boundary) can now be obtained. The nodal forces are determined

by "measuring" the work done by the tractions due to a series of virtual

displacements - displacement shape functions*. The generalized forces

are given by

f N T(x) t(x) dx (29)

For the prescribed displacements u, the generalized forces (Equationth

(29)) are the j column of a stiffness matrix for the domain Q. To

completely calculate the stiffness matrix we must individually subject

each remaining nodal degree of freedom to a unit perturbation, solve the

corresponding displacement boundary value problem, and then determine

• the genoralizpd forces by Equation (29) to obtain the corresponding

column of K.

We now seek to express the above procedure in equation form. Using

indicial notation, the nodal displacement vector for the h

0 perturbation is given by

*In this context the shape functions are locally based but defined

globally. That is, they are nonzero on one or two elements but defined
on a 11
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Si J

.= i 1 (30)

where i ranges from 1 to the number of degrees of freedom (n). Each u

th
is the j coordinate vector in the n dimensional space. Combining all

of the vectors into a single matrix (i.e., the superscript J becomes an

index j) allows Equation (25) to be rewritten as

,u. = C Pk (31)i i 1k k

By Equation (30), uil is .simply the identity matrix. Thus we can easily
solve for the .rtificial tractions as

P.. ... (32)

t:-l
This formulation provides insight to the character of G - ; each column

of G is the vector of artificial tractions resulting from a unit

perturbation of the corresponding d o f. G is of full column rank and

thus invertable if the collocation point positions are unique.

Inserting this result into Equations (28) and (29) yields the stiffness

matrix is

K.. = Nki(X) Mkl(X) dx Flm G mj- (33)

r

or in matrix notation

K NT(x) M(x) dx F G 1  (34)

Kelly et- al. (Ref 11) obtained the same form of solution for the potential

problom by eliminating the source density. For the elastostatics problem

this is equivalent to eliminating P from Equations (25) and (26). With

* their approach we see that the product of F and G provides tbe relation

.betweon roda l tractions and displacements. Wo can write Equation (34)

i in abbreviated form as

21
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K = C E (35)

where

S NT(x) M(x) dx (36)
r

and

E F G 1  (37)

Brebbia's direct approach (Ref 21) to obtaining a stiffness matrix for

the DBEM also has the same form. For the DBEM however, E is given by

% E = G F (38)

whore F is not the same as obtained for the IBEM. The DBEM uses the

same fundamental solution; however the roles of the source and field

" points and the roles of the indices are reversed in obtaining the

Somigliana identities.

As previously mentioned, direct formulations of stiffness matrices

do not initially yield a symmetric matrix. In addition both the direct

and variational formulations produce stiffness matrices which violate

A- equilibrium. lartman (Ref 23) attributed these problems to the approxi-

mations made in obtaining the traction-displacement relationship, Equa-

tions (37) and (38), for the IBEM and DBEM, respectively. For the DBEM

the equilibrium problem can be addressed when formulating E, iquation

(13) is augmented with two additional equations and corresponding Lagrange

multipliers, which force the traction distribution to "identically"

satisfy equilibrium (Ret 11). Most approaches to these problems modify

the stiffness matrix rather than address the source of the problem, the

traction-displacement relationship (Ref 20).

Discontinuity of Boundary Element Methods

Regardless of the formulation there is a characteristic of BE

formulated stiffness matrices and BE solutions in general which seems to

* 22
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be ignored in the literature; BE fonmulations are inherently

incompatible at the interface of homogeneous regions.

Derivations of BE formulations usually indicate that the governing

differential equations are satisfied exactly in the domain while the

boundary conditions are only approximately satisfied. Often this is

interpreted as meaning the boundary element shape functions constrain

the displacement field. Actually the meaning has greater depth. This

interpretation is often a consequence of invalid analogies between BEMs

and FEMs. The methods are theoretically related and certainly the BEM

has borrowed much technology from the FEM; however, the accepted use of

the name "boundary element methods" for boundary integral equation tech-

niques is misleading. This interpretation is usually not enlightened by

numerical experience since many BE programs can not accurately calculate

* responses in the near boundary region.

The shape functions used for the so called "boundary elements" do

not constrain the displacement field but merely offer an approximation

-of the boundary values for integration. If they did constrain the

displacement field, a single BE region comprised of four linear elements

could pass the FE "patch test" (Ref 39); such is not the case. Typically

the integral equations are satisfied in a collocation sense (i.e., at

discrete points along the boundary) and thus the boundary conditions are

satisfied at the collocation points (which coincide with nodal points

for continuous element formulations). In between these points, satis-

faction of boundary conditions can be greatly in error. This is graph-

ically illustrated in our previous report (Ref 31).

* Similar to the displacement-based FEM's satisfaction of equilibrium

equations in a nodal sense, the BEM only satisfies boundary conditions

in a nodal sense. Many researchers indicate that compatibility between

the two methods is easily satisfied by using the same shape functions

0 (Refs 1, 13, 21, 22, and 24); 1 disagree. However, discontinuity does

"4" not imply poor results. On the contrary many incompntible finite

C elements exhibit improved performance, and many accurate BE solutions
. have been reported. Recognition of this basic incompatible behavior

0 could be of practical use. It affects the convergence properties of the

method and can potentially explain other solution characteristics. One

23
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very useful application could be in mesh refinement. Whether the

refinement is a manual or an adaptive process, the variation in computed

responses between collocation points can provide a measure on which to

base the refinement.

V DISCUSSION OF NUMERICAL IMPIEMENTATION

This section discusses the numerical implementation of the IBEM

stiffness matrix developed above. Algorithms, in the form of pseudo-

code outlines, provide detail on key aspects of the implementation.

These algorithms have been implemented in a research code. The

* numerical studies are incomplete but will be presented in a follow-up

* report. The scope of this discussion is limited to the calculation of

the stiffness matrix; assembly of element stiffness matrices is well

documented (Ref 39). Both the IBEM and DBEM are addressed below since

their stiffness matrices Equation (35) can have the same form. Rudolphi

(Ref 22) provides a general outline for the calculation of a "stiffness"

matrix including the BE coefficient matrix calculations. His paper

deals principally with the potential problem using the DBEM. Though

Rudolphi's work was not referenced for the implementation aspects of

this work, the main steps in the calculations are independent of the

application and BE formulation.

Due to the complexity of BE and FE software systems emphasis must

he placed on the modular design of the coupled software system. In the

* fol lowing discussion I assume BE and FE systems exist and require modi-

f i (,a fi ation. The stiffness matrix calculation can he organized as three

tasks:

(1) Calculation of the coefficient matrices (G and F) and C

(2) Preliminary K (alculation, inverse and matrix product

calculations as shown in Equation (34)

('3) Opt. ioa I adjustments in K to satisfy equi I ihr im and

symmetry
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The first task requires modification of the BE system. The second

and third tasks can be added to the BE system, comprise a separate

module, or be incorporated into an element routine of the FE system. In

my approach I prefer to "weakly couple" the software systems so that

they can still serve as individual research and analysis tools. By this

approach the first task is completely performed by the modified BE

system. The second and third tasks are performed by a separate program

module which except for the three component matrices of K (i.e.,

C, F, g,) requires no access to the BE data. An element routine is then

added to the FE program which reads data defining the "supei--element"
connectivity and assembles the BE K into the global system at the time

of assembly. Solution of the FE system provides nodal displacements

Vfrom which stresses can be calculated in both the FE and BE domains.

When boundary tractiens or internal responses are required in the

BE region, the displacements associated with BE nodes must be retained.

For either rE formulation, boundary tractions can be obtained by the

* equation: t = E u. For the DBEM the known boundary values in combination

with Somigliana's identities (Equation (10)) provide internal responses.

For the IBEM the tractions or displacements could be used to solve a

boundary value problem for the artificial tractions. Alternatively

could be saved during the K calculations giving P = G u. The effect

of the artificial tractions is then integrated to obtain internal responses

according to Equations (16) through (18). The remainder of this

-riscussion concentrates on the calculation of the stiffness matrix.

For smaller problems the calculation of the matrices comprising K

* (dminates the nuimerical effort. The coefficient matrices are inherently

\ fii 1 a1nd thei r formul ation re( i res extens ive nlimerical integration.

.r "I:P' '-r-st -f tl:f;r calculation would appear to increase with the square

- the iuimber of boundary elements. There is an element "overhead cost"

* which follows this trend; however for a program which uses a variable

%. order integrat ion scheme the. cost of the average element integration

" derenass. This is due to the reduction in the order of integration

with a decrease in the rntio of element length to collocation point

* dristancr (Rfr 31 and 32).

'p".
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p Calculation of E requires an IBEM program to generate both F and G

for a single homogeneous domain. These are the same equations required

to combine homogeneous BE regions by approximate satisfaction of equi-

librium and continuity along their interface. Thus many existing BE

programs already have this capability. The calculation of two coeffi-

cient matrices does not double the numerical effort because much of the

overhead in Lhe numerical integrations is common to both types of co-

efficients.

In the DBEM both F and G are always calculated. The only modifica-

tion which might be required, depending on the program design, is the

retention of all coefficients. Some implementations immediately multiply

known boundary values by corresponding coefficients and sum the terms

into the known vector to form the system of equations (see Equation 15).

* Calculating the integration of the shape function product matrix,

C, according to Equation (36), is effectively performed at the element

level. Because of the locally based nature of the shape functions, C is

very sparse. For quadratic elements, rows associated with a mid-node

have three nonzero terms, and those associated with an extreme node have

five nonzero terms. In this implementation tractions and displacements

are interpolated at the same order (quadratic), and there are no

provisions for traction discontinuities. As a result M(x) = N(s) and

therefore C is symmetric. Not providing for traction discontinuities

does place geometrical constraints on the BE region. However for BE

regions comprised of several elements and few corners, Rudolphi (Ref 22)

concludes that traction continuity has a negligible effect on the accuracy.

0 For applications where the BEM region is used as an "infinite element"

the analyst determines the shape of the FEM/BEM interface and thus geo-

metric discontinuities pose no problem.

For a vector boundary value problem such as the elasticity problem,

* the two rows of C corresponding to a common node have identical terms

but differ in their position, column. Except for the diagonal terms in

C each term calculated at the element level is complete (i.e., no sum-

mation is required) and could be formally assembled into four positions

* of C. Only the diagonal terms of C which correspond to shape functions

'I.
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spanning two elements require the addition of a second term. Thus it is

very efficient to both calculate C and perform its multiplication with E

at an element level. There is a maximum of six unique terms for a single

element. Execution and storage requirements associated with C are trivial
compared to F and G which are full coefficient matrices.

The algorithm below outlines the calculation of C at the element

level. The research code is written in the Modula-2 language (Ref 40),

which is a descendent of Pascal and Modula. Those familiar with Pascal

* will recognize the dialect below. I have attempted to remove enough

syntactical idiosyncrasies from the code to permit communication. Calls

to Modula-2 procedures (analogous to FORTRAN subroutines) are supplemented

with short descriptions of their purpose. Comments which do not replace

actual code are enclosed in (* *)'s. General file operations and variable

definitions are omitted. Descriptive variable names supplemented by

comments are used to define variables. Many modern languages provide

for user defined data types. Nnode and Mnode are variables which can

". have the enumerated values of (a,c,b), the node indices listed by extreme

nodes first. This corresponds to a of Figure 4 taking the values of

(1,3,2) respectively. These variables, Nnode and Mnode, serve as nodal

indices to arrays and promote internal documentation. More complicated
data types such as records have been converted to arrays to simplify the

outline.
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PROCEDURE GenerateShapeProductMatrix
(ContNode, (* array of continuous element node numbers

indexed as (element number,node_index) *)
numeltotal, (* total number of continuous elements *)
ShapelntOrder) (* numerical integration order *)

BEGIN (* the GenerateShapeProductMatrix procedure *)
FOR elnum = I TO numeltotal DO (* for each element *)

(* determine shape function (N) & weight-Jacobian product

values at each integration point *)
FOR Nnode = a TO b DO (* an index on the node *)
Write the equation number for node ContNode[elnum,Nnode] to

the NMfile
END (* the Nnode loop *)
FOR intpt = 1 TO ShapelntOrder DO (* each integration point *)

position = GAUSSpt[ShapelntOrder,intpt] (* obtain the
position of the integration point *)

SIIAPEfunctions(position,Nvaluesintpt) (* calculate the shape

function values at "position" and save in Nvalues
indexed as [intptnode_index] *)

* Calculate the Jacobian at "position"
WGTdetJintpt] = GAUSSwgt[ShapelntOrder,intpt]*J (* calculate

.. the integration weight Jacobian product at each integration
point *)

END (* the integration point loop *)
FOR Nnode = a TO b DO (* for each nonzero shape function *)

FOR Mnode = Nnode TO b DO (* for each unique combination of
shape function, i.e., N=M thus symmetry is considered *)
integral 0.0 (* initialize integration *)
FOR intpt 1 TO ShapelntOrder DO (* each int. pt *)

integral = integral + Nvalues[intpt,Nnode]*
Nvalues[ intpt,Mnode]*WGTdetJ[ intpt]

ENT) (* the integration point loop *)

Write the integral value to the NMfile
END (* the Mnode, M shape function, loop *)

EN) (* the Nnode, N shape function, loop *)
K". ' END (* the element loop *)

EN) (* the Generat ShapeProductMatrix procedure *)

0
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The six integration results are written to the NMfile in the order:

a-a, a-c, a-b, c-c, c-b, and b-b, where the letters indicate the node

index of each shape function in the product.

With all of the component matrices for K calculated, the second

task of calculating an initial nonsymmetrical stiffness matrix can pro-

ceed. The third task of satisfying equilibrium and obtaining a symmetric

form can be combined with the matrix operations of the second task. The

details of integrating the two tasks are highly dependent on the method

*used to obtain symmetry and equilibrium. For this research code, the

tasks are independent, so different methods can be investigated. This

also allows the symmetry of the original stiffness matrix to be examined.

The initial steps required in the calculation of K differ in the

two BE formulations. This difference results from the reversal of F and
-l

G I in the traction-displacement relations, Equations (37) and (38). As
3

-' a result of this difference the IBEM is burdened with n additional multi-

2
plications and (n-l)n additions to obtain E. Additionally the DBEM has

reduced memory requirements. F can be read from disk one column at a

time. Each column can immediately be used to calculate the correspond-

ing column of K.

As the order of the system of equations increases, the calculation

of the inverse in Equation (37) or (38) becomes the most costly step.

3
For Gauss elimination the cost increases as n . A common approach (Ref

22 and 24) to reducing the cost of calculating the inverse is to sub-

. divide the single BE region into several BE regions, providing many small

stiffness matrices instead of one large stiffness matrix. This subdivi-

0 sion introduces additional boundary elements, and thus more equations,

but the equations corresponding to the complete BE domain are now block

- banded. Mitsui et al. (Ref 24) suggests that with regard to efficiency

V there is an optimal degree of subdivision. Subdividing the BE region

0 ay also require that traction discontinuities and the violation of equi-

libriim he treated more rigorously since the occurrence of geometric

-Iisc(ontinu ities and a relatively small number of elements would be more

likely.
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* For both BE formulations, a column of E is immediately used to

calculate the corresponding column of K. The above algorithm calculates

C at the element level and writes the values to NMfile. An algorithm to

calculate an initial K, given the component matrices, is shown below.

Values of C are read from NMfile, consistent with the previous

algorithm. In this implementation the pseudo-code given below is a

separate program (a Modula-2 program module).

0
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MODULE StiffnessMatrix
BEGIN (* the StiffnessMatrix module *)
ReadCmatrix(EqNum,C,numeltotal,order) (* read C: EqNum contains

'. the equation numbers for each node indexed as
a [element numbernodeindex] and C contains the integration of

the shape function products indexed as [elementnumber,O..5] *)
ReadGmatrix (* read G *)
ReadFmatrix (* read F: For the Modula-2 implementation these two
procedures cause G and F to be read by modules envolved in the
calculation of E. This module does not have access to the data

Vof G and F. *)

(* Calculate the stiffness matrix, K *)
Initialize K to zero
FOR col = 1 TO order DO (* for each column of K *)
CalcEcol(col,Ecol) (* calculates a single column of E stored in

Ecol *)
FOR elnum = 1 TO numeltotal DO (* for each element *)

Ccount = 0 (* initialize the index for the C array *)
FOR nodel = a TO b DO (* node index for the first shape

function *)
roweq = EqNum[elnum,nodell (*first row equation for nodel*)
FOR node2 = nodel TO b DO (* for each new combination *)

"- coleq = EqNum[elnum,node2] (* first column equation for
node2 *)

Cval = C[elnum,Ccount] (* extract the C term from the
element array *)

FOR eqincrement = 0 TO 1 DO (* for each nodal dof *)
Crow = roweq+eqincrement
Ccol = coleq+eqincrement
(* calc. contributions in both symmetrical terms *)
K[Crow,col] = K[Crow,col] + Ecol[Ccol]*Cval
IF roweq#coleq THEN (* not a diagonal term *)
K[Crol,col] = K[Ccol,col] + Ecol[Crow]*Cval

END
END (* the eqincrement loop *)
increment Ccount

END (* the node2 loop *)
* END (* the nodel loop *)

END (* the elnum loop *)
END (* the col loop *)

Adjust K for equilibrium and symmetry
Write the upper triangular portion of K to disk

0 END (* the StiffnessMatrix module *)
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V As previously noted, due to symmetry and the vector nature of the

elasticity problem each element C value (except diagonal terms) has four

w. positions in the assembled C. The "eqincrement loop" above multiplies

each element C value by four terms (two for diagonal terms) in the column

of E and assembles the products into the corresponding four K terms. By

this approach the sparsity of C is exploited and the matrix is never

assembled.

The last task in calculating a stiffness matrix is adjusting K to

satisfy symmetry and equilibrium. The work of Tullberg and Bolteus

(Ref 20) provides guidance, based on numerical studies, for both of these

problems. As previously mentioned, numerical studies have shown the

nonsymmetrical K obtained by the direct approach to be more accurate

N. than the symmetrical form obtained by a variational approach. However

* when combining the matrix with an existing FE system a symmetric form is

u1slually preferable. An exception can occur if the FEM is used to model

plasticity governed by nonassociative flow rule; in this case the result-

ing FE system can be nonsymmetric. In this study the stiffness matrix

is symmetrized by averaging the off-diagonal terms.

In the initial implementat.ion of the research code, equilibrium

considerations have not been included. Our principal interest is in

infinite domain problems where previously mentioned techniques are not

appl icable. For Finite domain problems, one of the methods implemented

by T I lberg and Boltous (Ref 20) to solve the equilibrium problem might

h.e improved upon. Fhw equi 1 ibrium error for a given direction was cor-

,, rected bv adding the average error to each term. This approach did not

* coi~sider the relative magnitude of each term. A better approximation

-i night be, obtained by basing ti error distribution on the normalized
magui tuid of each term where the sum of absolute values of the stiffness

- terms is the norma I i z ing factor.
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SUMMARY AND CONCLUSIONS

Fundamental differences in the formulations of the finite element

and boundary element methods result in corresponding strengths and

weaknesses. A combination of the methods using the strengths of each

may allow some classes of problems to be solved more effectively.

. Applications with infinite or semi-infinite domains and fracture

mechanics problems are candidates for combined solution approaches.

The DBEM and IBEM are the most common integral equation methods in

use. They both have their origins in classical potential theory and the

. fundamental singular solution is a key component of their derivations.

* For both methods the approximations common to most formulations are:

(1) integrating in a piecewise manner, and (2) solving the integral

* equations in a collocation sense. The collocation approximation limits

the satisfaction of boundary conditions to discrete points; for coupled

-" solutions interface boundaries will be inherently incompatible.

Coupling approaches can be categorized based on several parameters.

The most basic classification indicates which numerical method hosts the

coupl ing ( i .e. , is the final form of the equations "BE like" or "FE

like"). This study addresses FE-hosted or stiffness couplings which can

be further categorized by the derivation of the stiffness matrix.

Either the stiffness matrix is obtained directly or via a variational

statement of the problem. In both cases the key matrices are the fully

populated coefficient matrices generated by the BEMs and a sparse matrix

obtained by the integration of shape function products. The BEM

0 coefficient matrices are manipulated to establish a relationship between

"he boundary tractions and displacements; this relation is then used

"'- directly to obtain a stiffness matrix or substituted into a boundary

variational statement.

* ih two major problems with the BE stiffness matrix are its lack of

symmetry and violation of equilibrium. A variatioinl formulation

inhcoront ly prduces a symmotric system which is Pop ivalont t.o taking the

vmo t r id; componer t of the corresponding (Ii r t I y - formu Ia ted s t i f fness
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matrix. Investigators have offered several alternatives for dealing with

the equi]ibrium problem ranging from the introduction of Lagrange

multipliers which enforce equilibrium to ad hoc adjustments of the

stiffness matrix.

In most cases, stiffness matrix calculations for both BE

formulations follow the same main steps. However, the direct BEM is

better suited to coupled solution approaches because of its simpler

traction-displacement relationship. For smaller problems the

calculation of matrices comprising K require the most numerical effort.

For larger problems the inverse calculation of a fully populated matrix

dominates the numerical effort. The only known method for reducing this

cost is to subdivide the homogeneous BE region into a number of smaller

regions--trading the calculation of a large inverse for the calculation

* of several smaller ones.

The only matrix in the stiffness calculation not calculated by

standard BE programs is the shape function product matrix C. For

continuous BEs C is symmetric. Additionally the locally based nature of

the shape functions makes C very sparse. The calculation of C and its

multiplication are effectively performed at the element level.

) RFCOMKEI)ATIONS

There are several areas of investigation which could improve our

fundamental understanding of coupled solution techniques or improve

* their numerical effectiveness. There are also off-shoot areas from this

and previous investigations which are not within the scope of this

project. Additionally there are areas which must be investigated to

attain our long term objective but could require significant

* implementation effort. These later areas are separately included below

but would require 6.2 level funding. For FY87, the following areas are

of interest:

* numerical comparison of BEM, FEM, stiffness-BEM, and coupled
sol ut ions

* numerical study of incompatibility
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-- between FEM and IBEM using the same shape functions

-- inherent to che DBEM
" theoretical basis and numerical techniques for dynamic problems

with infinite domains
* theoretical basis and numerical techniques for semi-infinite

domains.

The first two areas are the recommended core for the FY87

investigation. The later two are rather general and could be

investigated as time permits. Areas of investigation which either are

6.2 level efforts or require significant 6.2 support include:

* numerical study of coupled solution behavior for static problems
* symmetry considerations in formulating the BE equations
* further investigation of element integrations

-- special techniques for integrations over singularities
-- special techniques for the near boundary region
-- order of integration calculation

* Galerkin formulation of BEMs
* development of a DBEM code to support 6.1 efforts
. visco-elasticity.

Two topics which are "off-shoots" of this and previous investigations

are:

* adaptivP mesh refinement based on boundary condition violation

* BE formulated crack-tip "elements" in FE hosted couplings using
Nthe recursive integration technique.

We appear to have unique aspects in our approach to both of these

problems.

0
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Appendix A

LIST OF SYMBOLS

The most general form of a variable (i.e., with the least amount of

supplementary symbols) is defined. For example, uI represents a displace-

ment vector but depending on the notation it may be continuous or discrete,

known or unknown. There are some non-unique uses of Latin symbols. For

%these cases supplementary symbols are included as necessary. Indicial

* notation is only used for vector and tensor quantities. The indice range

in this case is two.

Mathematical Symbols

V(x) Explicitly defines the quantity as continuous as opposed to

discrete.

V A rectangular or square matrix of functions (e.g., M(x)) or
constants (e.g., K).

V A column vector.

V A known vwlue(s); for example, 6 is a vector of known nodal

displacements.

V An unknown value(s); for example, t is a vector of unknown
nodal tractions.

VT Transpose of a matrix or vector. V is a row vector.

V Inverse of a matrix.

* Tatin Symbols

Ai A constant tensor which provides a zero displacement
A" for the fundamental singular solution at a reference

distance r. A = -6 CI[C ln(ro)-I]
o ik 6 ik c11 2  0nr-]

C Square, sparse matrix which contains boundary
integrations of traction and displacement shape
function products.

A-1

0kL LVK



as . .. n U. - := : rT= 'T f W f : : ,w -' -. : -.... . -- . -.. ... .....- ..... - -. . .. ... -- .. ... . -.. , .. . . .

. '

Cl, C2, C3, C4 Constants used in defining the fundamental solution.
Functions of the material constants.

Sek() A unit concentrated force used in the definition of
A the fundamental solution.

E Young' s modulus.

E Square matrix relating nodal tractions to nodal
displacements, t = E u

F- (X,;) Kernal function in Somigliana's 2'nd identity
relating boundary displacements to the stress field.

f Column vector of generalized nodal forces.

F.ij(x,$) Fundamental singular solution, Kelvin solution, for
,1] - traction.

F A matrix of element integrations involving the

traction fundamental solution. Both the direct and
indirect formulations consist of F matrices. The

'two F matrices differ due to the switch in roles of
the field and source point and the indices.

G. (x, ) Fundamental singular solution, Kelvin solution, for

- displacement.

173 A matrix of element integrations involving the
displacement Kelvin solution. Due to the
symmetries in the displacement Kelvin solution the

G matrices for the direct and indirect formulations
are equivalent.

fi (x' ) Kernal function in Somigliana's 2'nd identityilk - relating boundary tractions and body forces

% to the stress field.

-(x) Traction shape functions used with nodal traction

values to approximate a piecewise continuous traction

distribution.

N(x) Displacement shape functions used with nodal
0 displacement values to approximate a continuous

displacement distribution.

ii.Order of the system of equations.

• P., Artificial boundary traction vector, analogous to
simple-layor source, or source density of potential

. . prob I e ms
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r Distance from the field to the source point.

2
r = yi Yi"

t. Actual boundary traction vector.

T ijk ( x , ) Fundamental singular solution, Kelvin solution, for
stress.

iu. Displacement vector.

'2 x. Position vector to a point on the boundary or within
the domain of the problem.

Yi. Vector from the source to the field point.
Yi =x. -h..

z. Position vector used in the integration of body
I, forces.

Greek Symbols

. rComplete, finite boundary of the problem.
,-'-

6.. Kronecker delta svmbol.

-.. Strain tensor.

.X A Lame's constant.

." A Lame's constant, the shear modulus.

v Poisson's ratio.

Position vector to a point on the boundary of
the problem.

o.. Stress tensor.
* I

Q.Domain of the problem.

,P. Vector of body forces.
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4 Utities (including power conlioningl from solid waste)
5 Explosives safety 32 Alternate energy source (geothermal power, photovoltaic
6 Aviation Engineering Test Facilities power systems, solar systems, wind systems, energy storageI 7 Fire prevention and control systems)
8 Anteni.a technology 33 Site data and systems integration (energy resource data, energy
9 !ructura analysis and design including numerical and consumption data, integrating energy systems)

computer techniques) 34 ENVIRONMENTAL PROTECTION
10 Protective construction (including hardened shelters, 35 Solid waste management

.4 shock and vibration studies) 36 Hazardous/toxic materials management
11 Soil/rock mechancs 37 Wastewater management and sanitary engineering
14 A flelds and pavements 38 Oil pollution removal and recovery

39 Air polhi-tion

15 ADVANCEI) BASE AND AMPHIBIOUS FACILITIES 44 OCEAN ENGINEERING

16 Base facilities (including shelters, power generation, water supplies) 45 Seafloor soils and foundations
- 7 Expedient roads/arfields/bridges 46 Seafloor construction systems and operations (including
18 Amphibious operations (including breakwaters, wave forces) diver and manipulator tools)
19 Over the-Beach operations including containerization. 47 Undersea structures and materials

materiel transfer, ighterage and cran.,s) 48 Anchors and moorings
20 PO L stoage. transfer and distribution 49 Undersea power systems, electromechanical cables,

* and connectors
50 Pressure vessel facilities
51 Physical environment (including site surveying

52 Ocean-based concrete structures
r-4 Undersea cable dynamics
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